cones
Calculate the realized volatility quantiles over rolling windows of time.
The cones indicator is designed to map out the ebb and flow of price movements through a detailed analysis of volatility quantiles. By examining the range of volatility within specific time frames, it offers a nuanced view of market behavior, highlighting periods of stability and turbulence.
The model for calculating volatility is selectable and can be one of the following:
- Standard deviation
- Parkinson
- Garman-Klass
- Hodges-Tompkins
- Rogers-Satchell
- Yang-Zhang
Read more about it in the model parameter description.
Parameters
- standard
data
: list[openbb_core.provider.abstract.data.Data]
The data to use for the calculation.
• Optional: False
index
: str
Index column name to use with data
, by default 'date'
• Default: date
• Optional: True
lower_q
: float
The lower quantile value for calculations
• Default: 0.25
• Optional: True
upper_q
: float
The upper quantile value for calculations
• Default: 0.75
• Optional: True
model
: Literal['std', 'parkinson', 'garman_klass', 'hodges_tompkins', 'rogers_satchell', 'yang_zhang']
The model used to calculate realized volatility
• Default: std
• Optional: True
is_crypto
: bool
Whether the data is crypto or not. If True, volatility is calculated for 365 days instead of 252
• Optional: True
trading_periods
: int
Number of trading periods in a year.
• Optional: True
Returns
results
: list[Data]
Serializable results.
provider
: None
Provider name.
warnings
: Optional[list[Warning_]]
list of warnings.
chart
: Optional[Chart]
Chart object.
extra
: dict[str, Any]
Extra info.