Skip to main content

cones

Calculate the realized volatility quantiles over rolling windows of time.

The cones indicator is designed to map out the ebb and flow of price movements through a detailed analysis of volatility quantiles. By examining the range of volatility within specific time frames, it offers a nuanced view of market behavior, highlighting periods of stability and turbulence.

The model for calculating volatility is selectable and can be one of the following:

  • Standard deviation
  • Parkinson
  • Garman-Klass
  • Hodges-Tompkins
  • Rogers-Satchell
  • Yang-Zhang

Read more about it in the model parameter description.

Parameters

data: list[openbb_core.provider.abstract.data.Data]

The data to use for the calculation.

Optional: False


index: str

Index column name to use with data, by default 'date'

Default: date

Optional: True


lower_q: float

The lower quantile value for calculations

Default: 0.25

Optional: True


upper_q: float

The upper quantile value for calculations

Default: 0.75

Optional: True


model: Literal['std', 'parkinson', 'garman_klass', 'hodges_tompkins', 'rogers_satchell', 'yang_zhang']

The model used to calculate realized volatility

Default: std

Optional: True


is_crypto: bool

Whether the data is crypto or not. If True, volatility is calculated for 365 days instead of 252

Optional: True


trading_periods: int

Number of trading periods in a year.

Optional: True


Returns

results: list[Data]

Serializable results.


provider: None

Provider name.


warnings: Optional[list[Warning_]]

list of warnings.


chart: Optional[Chart]

Chart object.


extra: dict[str, Any]

Extra info.


On this page