unitroot_test
Get Unit Root Test.
This function applies two renowned tests to assess whether your data series is stationary or if it contains a unit root, indicating it may be influenced by time-based trends or seasonality. The Augmented Dickey-Fuller (ADF) test helps identify the presence of a unit root, suggesting that the series could be non-stationary and potentially unpredictable over time. On the other hand, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test checks for the stationarity of the series, where failing to reject the null hypothesis indicates a stable, stationary series. Together, these tests provide a comprehensive view of your data's time series properties, essential for accurate modeling and forecasting.
Parameters
- standard
data
: list[openbb_core.provider.abstract.data.Data]
Time series data.
• Optional: False
target
: str
Target column name.
• Optional: False
fuller_reg
: Literal['c', 'ct', 'ctt', 'nc']
Regression type for ADF test.
• Default: c
• Optional: True
kpss_reg
: Literal['c', 'ct']
Regression type for KPSS test.
• Default: c
• Optional: True
Returns
results
: list[UnitRootModel]
Serializable results.
provider
: None
Provider name.
warnings
: Optional[list[Warning_]]
list of warnings.
chart
: Optional[Chart]
Chart object.
extra
: dict[str, Any]
Extra info.
Data
- UnitRootModel
adf
: ADFTestModel
kpss
: KPSSTestModel