Skip to main content

mean

Calculate the rolling average of a target column within a given window size.

The rolling mean is a simple moving average that calculates the average of a target variable over a specified window. This function is widely used in financial analysis to smooth short-term fluctuations and highlight longer-term trends or cycles in time series data.

Examples

from openbb import obb
# Get Rolling Mean.
stock_data = obb.equity.price.historical(symbol="TSLA", start_date="2023-01-01", provider="fmp").to_df()
returns = stock_data["close"].pct_change().dropna()
obb.quantitative.rolling.mean(data=returns, target="close", window=252)
obb.quantitative.rolling.mean(target='close', window=2, data=[{'date': '2023-01-02', 'close': 0.05}, {'date': '2023-01-03', 'close': 0.08}, {'date': '2023-01-04', 'close': 0.07}, {'date': '2023-01-05', 'close': 0.06}, {'date': '2023-01-06', 'close': 0.06}])

Parameters

NameTypeDescriptionDefaultOptional
dataList[Data]The time series data as a list of data points.False
targetstrThe name of the column for which to calculate the mean.False
windowPositiveIntThe number of observations used for calculating the rolling measure.False
indexstr, optionalThe name of the index column, default is "date".False

Returns

OBBject
results : List[Data]
An object containing the rolling mean values.