correlation_matrix
Get the correlation matrix of an input dataset.
The correlation matrix provides a view of how different variables in your dataset relate to one another. By quantifying the degree to which variables move in relation to each other, this matrix can help identify patterns, trends, and potential areas for deeper analysis. The correlation score ranges from -1 to 1, with -1 indicating a perfect negative correlation, 0 indicating no correlation, and 1 indicating a perfect positive correlation.
Examples
from openbb import obb
# Get the correlation matrix of a dataset.
stock_data = obb.equity.price.historical(symbol='TSLA', start_date='2023-01-01', provider='fmp').to_df()
obb.econometrics.correlation_matrix(data=stock_data)
obb.econometrics.correlation_matrix(data=[{'date': '2023-01-02', 'open': 110.0, 'high': 120.0, 'low': 100.0, 'close': 115.0, 'volume': 10000.0}, {'date': '2023-01-03', 'open': 165.0, 'high': 180.0, 'low': 150.0, 'close': 172.5, 'volume': 15000.0}, {'date': '2023-01-04', 'open': 146.67, 'high': 160.0, 'low': 133.33, 'close': 153.33, 'volume': 13333.33}, {'date': '2023-01-05', 'open': 137.5, 'high': 150.0, 'low': 125.0, 'close': 143.75, 'volume': 12500.0}, {'date': '2023-01-06', 'open': 132.0, 'high': 144.0, 'low': 120.0, 'close': 138.0, 'volume': 12000.0}])
Parameters
- standard
Name | Type | Description | Default | Optional |
---|---|---|---|---|
data | List[Data] | Input dataset. | False | |
method | Literal["pearson", "kendall", "spearman"] | Method to use for correlation calculation. Default is "pearson". | False | |
pearson | standard correlation coefficient | kendall : Kendall Tau correlation coefficient | False | |
spearman | Spearman rank correlation | Returns | False |
Returns
OBBject
results : List[Data]
Correlation matrix.