Skip to main content

correlation_matrix

Get the correlation matrix of an input dataset.

The correlation matrix provides a view of how different variables in your dataset relate to one another. By quantifying the degree to which variables move in relation to each other, this matrix can help identify patterns, trends, and potential areas for deeper analysis. The correlation score ranges from -1 to 1, with -1 indicating a perfect negative correlation, 0 indicating no correlation, and 1 indicating a perfect positive correlation.

Examples

from openbb import obb
# Get the correlation matrix of a dataset.
stock_data = obb.equity.price.historical(symbol='TSLA', start_date='2023-01-01', provider='fmp').to_df()
obb.econometrics.correlation_matrix(data=stock_data)
obb.econometrics.correlation_matrix(data=[{'date': '2023-01-02', 'open': 110.0, 'high': 120.0, 'low': 100.0, 'close': 115.0, 'volume': 10000.0}, {'date': '2023-01-03', 'open': 165.0, 'high': 180.0, 'low': 150.0, 'close': 172.5, 'volume': 15000.0}, {'date': '2023-01-04', 'open': 146.67, 'high': 160.0, 'low': 133.33, 'close': 153.33, 'volume': 13333.33}, {'date': '2023-01-05', 'open': 137.5, 'high': 150.0, 'low': 125.0, 'close': 143.75, 'volume': 12500.0}, {'date': '2023-01-06', 'open': 132.0, 'high': 144.0, 'low': 120.0, 'close': 138.0, 'volume': 12000.0}])

Parameters

NameTypeDescriptionDefaultOptional
dataList[Data]Input dataset.False
methodLiteral["pearson", "kendall", "spearman"]Method to use for correlation calculation. Default is "pearson".False
pearsonstandard correlation coefficientkendall : Kendall Tau correlation coefficientFalse
spearmanSpearman rank correlationReturnsFalse

Returns

OBBject
results : List[Data]
Correlation matrix.