Skip to main content

summary

Get Summary Statistics.

The summary that offers a snapshot of its central tendencies, variability, and distribution. This command calculates essential statistics, including mean, standard deviation, variance, and specific percentiles, to provide a detailed profile of your target column. B y examining these metrics, you gain insights into the data's overall behavior, helping to identify patterns, outliers, or anomalies. The summary table is an invaluable tool for initial data exploration, ensuring you have a solid foundation for further analysis or reporting.

Examples

from openbb import obb
# Get Summary Statistics.
stock_data = obb.equity.price.historical(symbol='TSLA', start_date='2023-01-01', provider='fmp').to_df()
obb.quantitative.summary(data=stock_data, target='close')
obb.quantitative.summary(target='close', data=[{'date': '2023-01-02', 'open': 110.0, 'high': 120.0, 'low': 100.0, 'close': 115.0, 'volume': 10000.0}, {'date': '2023-01-03', 'open': 165.0, 'high': 180.0, 'low': 150.0, 'close': 172.5, 'volume': 15000.0}, {'date': '2023-01-04', 'open': 146.67, 'high': 160.0, 'low': 133.33, 'close': 153.33, 'volume': 13333.33}, {'date': '2023-01-05', 'open': 137.5, 'high': 150.0, 'low': 125.0, 'close': 143.75, 'volume': 12500.0}, {'date': '2023-01-06', 'open': 132.0, 'high': 144.0, 'low': 120.0, 'close': 138.0, 'volume': 12000.0}])

Parameters

NameTypeDescriptionDefaultOptional
dataList[Data]Time series data.False
targetstrTarget column name.False

Returns

OBBject
results : SummaryModel
Summary table.