Skip to main content

variance

Calculate the rolling variance of a target column within a given window size.

Variance measures the dispersion of a set of data points around their mean. It is a key metric for assessing the volatility and stability of financial returns or other time series data over a specified rolling window.

Examples

from openbb import obb
# Get Rolling Variance.
stock_data = obb.equity.price.historical(symbol="TSLA", start_date="2023-01-01", provider="fmp").to_df()
returns = stock_data["close"].pct_change().dropna()
obb.quantitative.rolling.variance(data=returns, target="close", window=252)
obb.quantitative.rolling.variance(target='close', window=2, data=[{'date': '2023-01-02', 'close': 0.05}, {'date': '2023-01-03', 'close': 0.08}, {'date': '2023-01-04', 'close': 0.07}, {'date': '2023-01-05', 'close': 0.06}, {'date': '2023-01-06', 'close': 0.06}])

Parameters

NameTypeDescriptionDefaultOptional
dataList[Data]The time series data as a list of data points.False
targetstrThe name of the column for which to calculate variance.False
windowPositiveIntThe number of observations used for calculating the rolling measure.False
indexstr, optionalThe name of the index column, default is "date".False

Returns

OBBject
results : List[Data]
An object containing the rolling variance values.