Skip to main content

stdev

Calculate the rolling standard deviation of a target column within a given window size.

Standard deviation is a measure of the amount of variation or dispersion of a set of values. It is widely used to assess the risk and volatility of financial returns or other time series data over a specified rolling window. It is the square root of the variance.

Examples

from openbb import obb
# Get Rolling Standard Deviation.
stock_data = obb.equity.price.historical(symbol="TSLA", start_date="2023-01-01", provider="fmp").to_df()
returns = stock_data["close"].pct_change().dropna()
obb.quantitative.rolling.stdev(data=returns, target="close", window=252)
obb.quantitative.rolling.stdev(target='close', window=2, data=[{'date': '2023-01-02', 'close': 0.05}, {'date': '2023-01-03', 'close': 0.08}, {'date': '2023-01-04', 'close': 0.07}, {'date': '2023-01-05', 'close': 0.06}, {'date': '2023-01-06', 'close': 0.06}])

Parameters

NameTypeDescriptionDefaultOptional
dataList[Data]The time series data as a list of data points.False
targetstrThe name of the column for which to calculate standard deviation.False
windowPositiveIntThe number of observations used for calculating the rolling measure.False
indexstr, optionalThe name of the index column, default is "date".False

Returns

OBBject
results : List[Data]
An object containing the rolling standard deviation values.