cones
Calculate the realized volatility quantiles over rolling windows of time.
The cones indicator is designed to map out the ebb and flow of price movements through a detailed analysis of volatility quantiles. By examining the range of volatility within specific time frames, it offers a nuanced view of market behavior, highlighting periods of stability and turbulence.
The model for calculating volatility is selectable and can be one of the following:
- Standard deviation
- Parkinson
- Garman-Klass
- Hodges-Tompkins
- Rogers-Satchell
- Yang-Zhang
Read more about it in the model parameter description.
Parameters
- standard
data: ForwardRef('Data') | ForwardRef('DataFrame') | ForwardRef('Series') | ForwardRef('ndarray') | dict | list
index: str
Default: date
lower_q: float
Default: 0.25
upper_q: float
Default: 0.75
model: Literal['std', 'parkinson', 'garman_klass', 'hodges_tompkins', 'rogers_satchell', 'yang_zhang']
Default: std
is_crypto: bool
Default: False
trading_periods: int | None
chart: bool
Default: False
Returns
results: list[Data]
Serializable results.
provider: str
Provider name.
warnings: Optional[list[Warning_]]
list of warnings.
chart: Optional[Chart]
Chart object.
extra: dict[str, Any]
Extra info.
Data
- standard