Skip to main content

cones

Calculate the realized volatility quantiles over rolling windows of time.

The cones indicator is designed to map out the ebb and flow of price movements through a detailed analysis of volatility quantiles. By examining the range of volatility within specific time frames, it offers a nuanced view of market behavior, highlighting periods of stability and turbulence.

The model for calculating volatility is selectable and can be one of the following:

  • Standard deviation
  • Parkinson
  • Garman-Klass
  • Hodges-Tompkins
  • Rogers-Satchell
  • Yang-Zhang

Read more about it in the model parameter description.

Parameters

data: ForwardRef('Data') | ForwardRef('DataFrame') | ForwardRef('Series') | ForwardRef('ndarray') | dict | list
index: str
Default: date
lower_q: float
Default: 0.25
upper_q: float
Default: 0.75
model: Literal['std', 'parkinson', 'garman_klass', 'hodges_tompkins', 'rogers_satchell', 'yang_zhang']
Default: std
is_crypto: bool
Default: False
trading_periods: int | None
chart: bool
Default: False


Returns

results: list[Data]

Serializable results.

provider: str

Provider name.

warnings: Optional[list[Warning_]]

list of warnings.

chart: Optional[Chart]

Chart object.

extra: dict[str, Any]

Extra info.


Data