Skip to main content

Advanced Charting Widget

This guide will walk you through the process of creating an advanced charting widget for OpenBB Workspace using TradingView UDF (Universal Data Feed) protocol with Kraken cryptocurrency data. By the end of this guide, you will have a working advanced charting widget that can display interactive price charts.

Step 1: Set Up Your Project

To get started, create the main application file and the widget configuration file. You will need these files:

  • main.py: This file will contain your FastAPI application code.
  • widgets.json: This file will define the configuration for your widget.

The backend will use the same FastAPI setup and structure as described in the Custom Backend page.

Step 2: Create the Charting Endpoints

Edit the main.py file and add the following code. This sets up a FastAPI application that implements the TradingView UDF protocol to connect with Kraken's cryptocurrency market data:

Note : This is a TradingView UDF (Universal Data Feed) protocol, it requires implementing several key endpoints:

  • Configuration (/udf/config): Provides information about supported features, resolutions, and exchanges
  • Symbol Search (/udf/search): Allows searching for available trading pairs
  • Symbol Info (/udf/symbols): Returns detailed information about a specific symbol
  • Historical Data (/udf/history): Retrieves OHLCV (Open, High, Low, Close, Volume) data for charting
  • Server Time (/udf/time): Provides the current server time for synchronization

The implementation also maps TradingView's resolution codes to Kraken's interval parameters:

"1" → 1 minute "60" → 1 hour "D" → 1 day "W" → 1 week

Click to expand/collapse code
from fastapi import FastAPI, Query, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from typing import List, Dict, Any, Optional, Union
from pydantic import BaseModel
import httpx
import time
import logging
from enum import Enum
import json
from pathlib import Path
from fastapi.responses import JSONResponse

app = FastAPI(title="TradingView UDF Kraken API")

# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)

# Kraken API base URL
KRAKEN_API_BASE = "https://api.kraken.com"

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Models
class UDFSearchResult(BaseModel):
symbol: str
full_name: str
description: str
exchange: str
ticker: str
type: str

class UDFSymbolInfo(BaseModel):
name: str
ticker: str
description: str
type: str
exchange: str
listed_exchange: str
timezone: str
session: str
minmov: int
pricescale: int
has_intraday: bool
has_daily: bool
has_weekly_and_monthly: bool
supported_resolutions: List[str]
currency_code: str
original_currency_code: str
volume_precision: int

class UDFBar(BaseModel):
s: str
errmsg: Optional[str] = None
t: Optional[List[int]] = None
c: Optional[List[float]] = None
o: Optional[List[float]] = None
h: Optional[List[float]] = None
l: Optional[List[float]] = None
v: Optional[List[float]] = None
nextTime: Optional[int] = None

class ResolutionEnum(str, Enum):
ONE_MINUTE = "1"
THREE_MINUTES = "3"
FIVE_MINUTES = "5"
FIFTEEN_MINUTES = "15"
THIRTY_MINUTES = "30"
ONE_HOUR = "60"
TWO_HOURS = "120"
FOUR_HOURS = "240"
SIX_HOURS = "360"
EIGHT_HOURS = "480"
TWELVE_HOURS = "720"
ONE_DAY = "D"
THREE_DAYS = "3D"
ONE_WEEK = "W"
ONE_MONTH = "M"

# Helper functions
def resolution_to_interval(resolution: str) -> str:
resolution_map = {
"1": "1",
"3": "3",
"5": "5",
"15": "15",
"30": "30",
"60": "60",
"120": "120",
"240": "240",
"360": "360",
"480": "480",
"720": "720",
"D": "1440",
"1D": "1440",
"3D": "4320",
"W": "10080",
"1W": "10080",
"M": "21600",
"1M": "21600",
}
return resolution_map.get(resolution, "60")

async def fetch_kraken_data(endpoint: str, params: Dict[str, Any] = None) -> Any:
url = f"{KRAKEN_API_BASE}{endpoint}"

try:
async with httpx.AsyncClient() as client:
response = await client.get(url, params=params, timeout=10.0)
response.raise_for_status()
data = response.json()

# Kraken API returns errors in a specific format
if data.get("error") and len(data["error"]) > 0:
logger.error(f"Kraken API error: {data['error']}")
raise HTTPException(status_code=500, detail=f"Kraken API error: {data['error']}")

return data
except httpx.HTTPError as e:
logger.error(f"Error fetching data from Kraken API: {e}")
raise HTTPException(status_code=500, detail=f"Error fetching data from Kraken: {str(e)}")

@app.get("/")
async def root():
return "OpenBB Workspace Backend example for bringing your own data to charting tradingview"

@app.get("/widgets.json")
def get_widgets():
"""Widgets configuration file for the OpenBB Custom Backend"""
return JSONResponse(
content=json.load((Path(__file__).parent.resolve() / "widgets.json").open())
)

# UDF API endpoints
@app.get("/udf/config")
async def get_config():
config = {
"supported_resolutions": ["1", "3", "5", "15", "30", "60", "120", "240", "360", "480", "720", "D", "3D", "W", "M"],
"supports_group_request": False,
"supports_marks": False,
"supports_search": True,
"supports_timescale_marks": False,
"supports_time": True,
"exchanges": [
{"value": "", "name": "All Exchanges", "desc": ""},
{"value": "KRAKEN", "name": "Kraken", "desc": "Kraken Exchange"}
],
"symbols_types": [
{"name": "All types", "value": ""},
{"name": "Crypto", "value": "crypto"}
]
}
return config

@app.get("/udf/search", response_model=List[UDFSearchResult])
async def search_symbols(
query: str = Query("", description="Search query"),
limit: int = Query(30, description="Limit of results")
):
try:
# Get asset pairs from Kraken
asset_pairs = await fetch_kraken_data("/0/public/AssetPairs")

filtered_symbols = []
for pair_name, pair_info in asset_pairs.get("result", {}).items():
# Skip darkpool pairs
if pair_name.startswith("."):
continue

base_asset = pair_info.get("base", "")
quote_asset = pair_info.get("quote", "")
wsname = pair_info.get("wsname", pair_name)

if (query.lower() in pair_name.lower() or
query.lower() in base_asset.lower() or
query.lower() in quote_asset.lower()):
filtered_symbols.append({
"symbol": pair_name,
"wsname": wsname,
"base": base_asset,
"quote": quote_asset,
"altname": pair_info.get("altname", pair_name)
})

if len(filtered_symbols) >= limit:
break

results = [
UDFSearchResult(
symbol=symbol["symbol"],
full_name=f"KRAKEN:{symbol['symbol']}",
description=f"{symbol['base']}/{symbol['quote']}",
exchange="KRAKEN",
ticker=symbol["symbol"],
type="crypto"
)
for symbol in filtered_symbols
]

return results
except Exception as e:
logger.error(f"Error in symbol search: {e}")
return []

@app.get("/udf/symbols")
async def get_symbol_info(symbol: str = Query(..., description="Symbol to get info for")):
clean_symbol = symbol.split(":")[-1] if ":" in symbol else symbol

try:
# Get asset pairs from Kraken
asset_pairs = await fetch_kraken_data("/0/public/AssetPairs")

if clean_symbol not in asset_pairs.get("result", {}):
return {"s": "error", "errmsg": "Symbol not found"}

symbol_info = asset_pairs["result"][clean_symbol]

# Determine price scale based on pair decimals
pair_decimals = symbol_info.get("pair_decimals", 8)
price_scale = 10 ** pair_decimals

result = {
"name": symbol_info.get("wsname", clean_symbol),
"ticker": clean_symbol,
"description": f"{symbol_info.get('base', '')}/{symbol_info.get('quote', '')}",
"type": "crypto",
"exchange": "KRAKEN",
"listed_exchange": "KRAKEN",
"timezone": "Etc/UTC",
"session": "24x7",
"minmov": 1,
"pricescale": price_scale,
"has_intraday": True,
"has_daily": True,
"has_weekly_and_monthly": True,
"supported_resolutions": ["1", "3", "5", "15", "30", "60", "120", "240", "360", "480", "720", "D", "3D", "W", "M"],
"currency_code": symbol_info.get("quote", ""),
"original_currency_code": symbol_info.get("quote", ""),
"volume_precision": symbol_info.get("lot_decimals", 8)
}

return result
except Exception as e:
logger.error(f"Error in symbol info: {e}")
return {"s": "error", "errmsg": "Failed to fetch symbol info"}

@app.get("/udf/history")
async def get_history(
symbol: str = Query(..., description="Symbol"),
resolution: str = Query(..., description="Resolution"),
from_time: int = Query(..., alias="from", description="From timestamp"),
to_time: int = Query(..., alias="to", description="To timestamp"),
countback: Optional[int] = Query(0, description="Count back")
):
clean_symbol = symbol.split(":")[-1] if ":" in symbol else symbol
interval = resolution_to_interval(resolution)

try:
params = {
"pair": clean_symbol,
"interval": interval
}

# Kraken OHLC endpoint accepts 'since' parameter in seconds
if from_time > 0:
params["since"] = str(from_time)

# Kraken doesn't have a direct 'to' parameter or 'countback'
# We'll fetch data and filter it on our side

ohlc_data = await fetch_kraken_data("/0/public/OHLC", params)

if not ohlc_data or "result" not in ohlc_data:
return {"s": "no_data"}

# Kraken returns data in format {pair_name: [[time, open, high, low, close, vwap, volume, count], ...], last: timestamp}
klines = ohlc_data["result"].get(clean_symbol, [])

# Filter by time range
filtered_klines = [
kline for kline in klines
if from_time <= kline[0] <= to_time
]

if not filtered_klines:
return {"s": "no_data"}

# Apply countback if specified
if countback > 0 and len(filtered_klines) > countback:
filtered_klines = filtered_klines[-countback:]

result = {
"s": "ok",
"t": [int(kline[0]) for kline in filtered_klines], # Time
"o": [float(kline[1]) for kline in filtered_klines], # Open
"h": [float(kline[2]) for kline in filtered_klines], # High
"l": [float(kline[3]) for kline in filtered_klines], # Low
"c": [float(kline[4]) for kline in filtered_klines], # Close
"v": [float(kline[6]) for kline in filtered_klines] # Volume
}

return result
except Exception as e:
logger.error(f"Error in history data: {e}")
return {"s": "error", "errmsg": f"Failed to fetch history data: {str(e)}"}

@app.get("/udf/time")
async def get_server_time():
try:
time_data = await fetch_kraken_data("/0/public/Time")
return int(time_data["result"]["unixtime"]) # Kraken returns time in seconds
except Exception as e:
logger.error(f"Error in server time: {e}")
return int(time.time()) # Return current time as fallback

if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=5050)

Step 3: Create the widgets.json File

Edit the widgets.json file and add the following JSON data. This configuration defines the widget's properties and how it should be displayed:

{
"udf_kraken": {
"name": "Advanced Charting - Kraken",
"description": "Advanced charting for Kraken, historical data from any Kraken asset",
"category": "Finance",
"type": "advanced_charting",
"endpoint": "/udf",
"gridData": {
"w": 20,
"h": 20
},
"data": {
"defaultSymbol": "XBTUSDC",
"updateFrequency" : 60000
}
}
}

updateFrequency is the frequency in milliseconds that the chart widget will update the data. Default is 60000 (1 minute).

Step 4: Add to OpenBB Pro

Navigate to OpenBB Pro Data Connectors and add your backend by clicking on the + Add Data button in the top right corner. Select Custom Backend and fill in the details. Your URL will be http://localhost:5050.

advanced-charting

Once you have added your backend, you can find the widget with the name Advanced Charting - Kraken. The widget will display interactive price charts for cryptocurrency pairs available on Kraken.