correlation_matrix
Get the correlation matrix of an input dataset.
The correlation matrix provides a view of how different variables in your dataset relate to one another. By quantifying the degree to which variables move in relation to each other, this matrix can help identify patterns, trends, and potential areas for deeper analysis. The correlation score ranges from -1 to 1, with -1 indicating a perfect negative correlation, 0 indicating no correlation, and 1 indicating a perfect positive correlation.
Examples
from openbb import obb
# Get the correlation matrix of a dataset.
stock_data = obb.equity.price.historical(symbol='TSLA', start_date='2023-01-01', provider='fmp').to_df()
obb.econometrics.correlation_matrix(data=stock_data)
obb.econometrics.correlation_matrix(data='[{'date': '2023-01-02', 'open': 110.0, 'high': 120.0, 'low': 100.0, 'close': 115.0, 'volume': 10000.0}, {'date': '2023-01-03', 'open': 165.0, 'high': 180.0, 'low': 150.0, 'close': 172.5, 'volume': 15000.0}, {'date': '2023-01-04', 'open': 146.67, 'high': 160.0, 'low': 133.33, 'close': 153.33, 'volume': 13333.33}, {'date': '2023-01-05', 'open': 137.5, 'high': 150.0, 'low': 125.0, 'close': 143.75, 'volume': 12500.0}, {'date': '2023-01-06', 'open': 132.0, 'high': 144.0, 'low': 120.0, 'close': 138.0, 'volume': 12000.0}]')
Parameters
- standard
data: list[openbb_core.provider.abstract.data.Data]
Input dataset.
method: Literal['pearson', 'kendall', 'spearman']
Default: pearson
Method to use for correlation calculation. Default is 'pearson'.
pearson: standard correlation coefficient
kendall : Kendall Tau correlation coefficient
spearman: Spearman rank correlation
Returns
results: list[Data]
Serializable results.
provider: None
Provider name.
warnings: Optional[list[Warning_]]
list of warnings.
chart: Optional[Chart]
Chart object.
extra: dict[str, Any]
Extra info.