anom
- Model
- Chart
Get Quantile Anomaly Detection Data
Source Code: [link]
openbb.forecast.anom(data: Union[pd.Series, pd.DataFrame], target_column: str = "close", train_split: float = 0.6)
Parameters
Name | Type | Description | Default | Optional |
---|---|---|---|---|
data | Union[pd.Series, pd.DataFrame] | None | False | |
Input Data | None | None | True | |
------- | None | None | True | |
target_column | str | Target column to forecast. Defaults to "close". | close | True |
train_split | (float, optional) | Train/val split. Defaults to 0.85. | 0.6 | True |
Returns
Type | Description |
---|---|
Tuple[ | List[TimeSeries], List[TimeSeries], List[TimeSeries], ] |
Display Quantile Anomaly Detection
Source Code: [link]
openbb.forecast.anom_chart(data: Union[pd.Series, pd.DataFrame], dataset_name: Any = "", target_column: str = "close", train_split: float = 0.6, export: str = "", start_date: Optional[datetime.datetime] = None, end_date: Optional[datetime.datetime] = None, external_axes: bool = False)
Parameters
Name | Type | Description | Default | Optional |
---|---|---|---|---|
data | Union[pd.Series, pd.DataFrame] | None | False | |
Input Data | None | None | True | |
---------- | None | None | True | |
target_column | str | Target column to forecast. Defaults to "close". | close | True |
train_split | (float, optional) | Train/val split. Defaults to 0.85. | 0.6 | True |
export | (str, optional) | Export data to csv, jpg, png, or pdf. Defaults to "". | True | |
start_date | (Optional[datetime], optional) | Start date. Defaults to None. | None | True |
end_date | (Optional[datetime], optional) | End date. Defaults to None. | None | True |
external_axes | bool | Whether to return the figure object or not, by default False | False | True |
Returns
Type | Description |
---|---|
Union[None, go.Figure] | None if external_axes is True, otherwise the figure object |